# PCI-DAS1000, PCI-DAS1001 & PCI-DAS1002 Multifunction Analog & Digital I/O

**User's Manual** 



Revision 2, March, 2002

© Copyright 2002, Measurement Computing Corporation

MEGA-FIFO, the CIO prefix to data acquisition board model numbers, the PCM prefix to data acquisition board model numbers, PCM-DAS08, PCM-D24C3, PCM-DAC02, PCM-COM422, PCM-COM485, PCM-DMM, PCM-DAS16D/12, PCM-DAS16S/12, PCM-DAS16D/16, PCM-DAS16S/16, PCI-DAS6402/16, Universal Library, *Insta*Cal, *Harsh Environment Warranty* and Measurement Computing Corporation are registered trademarks of Measurement Computing Corporation.

IBM, PC, and PC/AT are trademarks of International Business Machines Corp. Windows is a trademark of Microsoft Corp. All other trademarks are the property of their respective owners.

Information furnished by Measurement Computing Corp. is believed to be accurate and reliable. However, no responsibility is assumed by Measurement Computing Corporation neither for its use; nor for any infringements of patents or other rights of third parties, which may result from its use. No license is granted by implication or otherwise under any patent or copyrights of Measurement Computing Corporation.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form by any means, electronic, mechanical, by photocopying, recording or otherwise without the prior written permission of Measurement Computing Corporation.

#### NOTICE

Measurement Computing Corporation does not authorize any Measurement Computing Corporation product for use in life support systems and/or devices without the written approval of the President of Measurement Computing Corporation Life support devices/systems are devices or systems which, a) are intended for surgical implantation into the body, or b) support or sustain life and whose failure to perform can be reasonably expected to result in injury. Measurement Computing Corp. products are not designed with the components required, and are not subject to the testing required to ensure a level of reliability suitable for the treatment and diagnosis of people.

HM PCI-DAS100#.doc

#### **Table of Contents**

| 1 | 1 Introduction 1-1            |                                                                                                                           |                      |
|---|-------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------|
| 2 | Inst                          | allation2-                                                                                                                | -1                   |
|   | 2.1<br>2.2<br>2.3<br>2.4      | Software Installation2-Hardware Installation2-Connector Pinout Diagrams2-Connecting Signals to the PCI-DAS10002-          | -1<br>-1<br>-2<br>-7 |
| 3 | Pro                           | gramming & Applications                                                                                                   | -1                   |
|   | 3.1<br>3.2<br>3.3             | Programming Languages       3-         Packaged Application Programs       3-         Register Level Programming       3- | -1<br>-1             |
| 4 | Cali                          | ibration4-                                                                                                                | -2                   |
|   | 4.1<br>4.2<br>Only)           | Calibration Configuration - Analog Inputs                                                                                 | -2                   |
| 5 | Spe                           | cifications: PCI-DAS1000 & 10015-                                                                                         | ·1                   |
| 6 | 6 Specifications: PCI-DAS1002 |                                                                                                                           |                      |

This page is blank.

# **1** Introduction

The PCI-DAS1000, PCI-DAS1001 and PCI-DAS1002 are multifunction analog and digital I/O boards designed to operate in computers with PCI bus accessory slots. The boards have the following capabilities:

- 16 single-ended or eight differential analog inputs with sample rates as high as 250 kHz.
- 24-bits of parallel digital I/O
- Three, user-accessible, 16-bit counters.
- Two analog output channels (PCI-DAS1001 and PCI-DAS1002 only)

The board's analog input ranges are as follows:

| PCI-DAS1000, PCI-DAS1002 | Bipolar:  | $\pm 10V, \pm 5V, \pm 2.5V, \text{ and } \pm 1.25V$ |
|--------------------------|-----------|-----------------------------------------------------|
|                          | Unipolar: | 0 to 10V, 0 to 5V, 0 to 2.5V and 0 to 1.25V         |
| PCI-DAS1001              | Bipolar:  | $\pm 10V, \pm 1.0V, \pm 0.1V, \pm 0.01V$            |
|                          | Unipolar: | 0 to 10V, 0 to 1.0V, 0 to 0.1V, 0 to 0.01V          |

The PCI-DAS1000 series is fully plug-and-play with no switches or jumpers to set. The boards are self-calibrating with no potentiometers to adjust. All calibration is performed via software and on-board trim D/A converters.

The PCI-DAS1000 series is fully supported by the powerful Universal Library software as well as a wide variety of application software packages including SoftWIRE.

## NOTE:

Unless a specific model code is required, this manual references the PCI-DAS1000 as a general term.

# **2** Installation

## 2.1 Software Installation

The board has no switches or jumpers to set. The simplest way to configure your board is to use the InstaCal<sup>TM</sup> program provided on the CD (or floppy disk). InstaCal<sup>TM</sup> will create a configuration file that your application software (and the optional Universal Library<sup>TM</sup>) will refer to so the software you use will automatically have access to the exact configuration of the board.

Please refer to the *Software Installation Manual* regarding the installation and operation of InstaCal.

### 2.2 Hardware Installation

The PCI-DAS1000 series boards are completely plug and play. There are no switches or jumpers to set. Configuration is controlled by your systems' BIOS. Follow the steps shown below to install your PCI board.

#### WARNING

#### Do not unplug the computer when installing the board. Doing so removes the computer's ground.

- 1. Turn your computer off, open it up, and insert the PCI-DAS1000 board into any available PCI slot.
- 2. Close your computer up and turn it on.
- 3. If you are using an operating system with support for Plug and Play (such as Windows 95 or 98), a dialog box will pop up as the system loads indicating that new hardware has been detected. If the information file for this board is not already loaded onto your PC, you will be prompted for a disk containing it. The InstaCal software supplied with your board contains this file. Insert the disk or CD and click OK.

#### 2.3 Connector Pinout Diagrams

The PCI-DAS1000 series boards use a 100-pin I/O connector. See Figures 2-1 and 2-2 for the PCI-DAS1000.

See Figures 2-3 and 2-4 for the PCI-DAS1001 and PCI-DAS1002, 8-channel differential and 16-channel single ended respectively.

| LLGND 1<br>CH0 HI 2<br>CH0 LO 3<br>CH1 HI 4<br>CH1 LO 5<br>CH2 HI 6<br>Ch2 LO 7<br>Ch3 HI 8<br>Ch3 LO 9<br>CH4 HI 10<br>Ch4 LO 11<br>Ch5 HI 12<br>Ch5 LO 13<br>Ch6 HI 14<br>Ch6 LO 15<br>Ch7 HI 16<br>Ch7 LO 17<br>LLGND 18<br>NC 19<br>NC 20<br>NC 21<br>NC 22<br>NC 23<br>NC 24<br>NC 22<br>NC 23<br>NC 24<br>NC 25<br>NC 26<br>NC 27<br>NC 28<br>NC 27<br>NC 23<br>NC 24<br>NC 27<br>NC 23<br>NC 24<br>NC 25<br>NC 26<br>NC 27<br>NC 28<br>NC 27<br>NC 30<br>NC 31<br>NC 32<br>NC 34<br>NC 35<br>NC 36<br>NC 37<br>NC 38<br>CTR4 CLK 39<br>CTR4 CLK 39<br>CTR4 OUT 41<br>A/D External Pacer 42<br>NC 43<br>NC 44<br>A/D External Trigger In 45<br>NC 47 | <br>51FIRST PORT A052FIRST PORT A153FIRST PORT A254FIRST PORT A355FIRST PORT A456FIRST PORT A557FIRST PORT B060FIRST PORT B161FIRST PORT B262FIRST PORT B363FIRST PORT B464FIRST PORT B565FIRST PORT B767FIRST PORT B767FIRST PORT C169FIRST PORT C270FIRST PORT C371FIRST PORT C472FIRST PORT C573FIRST PORT C674FIRST PORT C674FIRST PORT C674FIRST PORT C775NC70NC80CTR6 CLK81CTR6 GATE82CTR6 OUT83NC84NC85CTR5 CLK86CTR5 GATE87CTR5 OUT88NC89GND90+12V91GND92-12V93NC94NC95A/D Internal Pacer Output96NC97NC |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NC 44<br>A/D External Trigger In 45<br>NC 46<br>NC 47<br>PC +5V 48<br>NC 49<br>GND 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 94 NC<br>95 A/D Internal Pacer Output<br>96 NC<br>97 NC<br>98 NC<br>99 NC<br>100 GND                                                                                                                                                                                                                                                                                                                                                                                                                             |

PCI-DAS1000 Connector Diagram 8 Channel, DIFFERENTIAL ANALOG-IN

Figure 2-1. Connector Diagram for PCI-DAS1000 - 8-Channel Differential Usage

| LLGND 1<br>Ch0 High 2<br>Ch8 High 3<br>Ch1 High 4<br>Ch9 High 5<br>Ch2 High 6<br>Ch10 High 7<br>Ch3 High 9<br>Ch12 High 10<br>Ch12 High 10<br>Ch12 High 11<br>Ch5 High 12<br>Ch13 High 14<br>Ch14 High 15<br>Ch14 High 16<br>Ch15 High 16<br>Ch15 High 17<br>LLGND 18<br>NC 20<br>NC 22<br>NC 23<br>NC 33<br>NC 35<br>NC 37<br>NC 37<br>NC 38 | 51FIRST PORT A052FIRST PORT A153FIRST PORT A254FIRST PORT A355FIRST PORT A456FIRST PORT A557FIRST PORT A658FIRST PORT B060FIRST PORT B161FIRST PORT B363FIRST PORT B464FIRST PORT B565FIRST PORT B666FIRST PORT B767FIRST PORT C168FIRST PORT C270FIRST PORT C371FIRST PORT C472FIRST PORT C573FIRST PORT C674FIRST PORT C775NC76NC77NC78NC79NC80CTR6 CLK81CTR6 GATE82CTR6 OUT83NC84NC85CTR5 CLK86CTR5 GATE87CTR5 OUT88NC |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NC 33<br>NC 34<br>NC 35<br>NC 36<br>NC 37<br>NC 38<br>CTR4 CLK 39<br>CTR4 GATE 40<br>CTR4 OUT 41<br>A/D External Pacer 42<br>NC 43<br>NC 44<br>A/D External Trigger In 45<br>NC 46<br>NC 47<br>PC +5V 48<br>NC 49<br>GND 50                                                                                                                                                                                                                                        | 83 NC<br>84 NC<br>85 CTR5 CLK<br>86 CTR5 GATE<br>87 CTR5 OUT<br>88 NC<br>90 +12V<br>91 GND<br>92 -12V<br>93 NC<br>94 NC<br>95 A/D Internal Pacer Output<br>96 NC<br>97 NC<br>98 NC<br>99 NC<br>100 GND                                                                                                                                                                                                                    |

PCI-DAS1000 Connector Diagram 16 Channel, Single-Ended

Figure 2-2. Connector Diagram for PCI-DAS1000 - 16-Channel Single-Ended Usage

PCI-DAS1001 & PCI-DAS1002 Connector Diagram 8 Channel, DIFFERENTIAL ANALOG-IN

Figure 2-3. Connector Diagram for PCI-DAS1001 & 1002 - 8-Channel Differential Usage

| LLGND 1<br>Ch0 High 2<br>Ch8 High 3<br>Ch1 High 4<br>Ch9 High 5<br>Ch2 High 6<br>Ch10 High 7<br>Ch3 High 8<br>Ch11 High 9<br>Ch4 High 10<br>Ch12 High 10<br>Ch12 High 11<br>Ch5 High 13<br>Ch6 High 14<br>Ch14 High 15<br>Ch7 High 16<br>Ch7 High 16<br>Ch7 High 16<br>Ch7 High 16<br>Ch15 High 17<br>LLGND 18<br>NC 20<br>NC 21<br>NC 22<br>NC 23<br>NC 24 | <ul> <li>51 FIRST PORT A0</li> <li>52 FIRST PORT A1</li> <li>53 FIRST PORT A2</li> <li>54 FIRST PORT A3</li> <li>55 FIRST PORT A4</li> <li>56 FIRST PORT A5</li> <li>57 FIRST PORT A6</li> <li>58 FIRST PORT B0</li> <li>60 FIRST PORT B1</li> <li>61 FIRST PORT B2</li> <li>62 FIRST PORT B3</li> <li>63 FIRST PORT B4</li> <li>64 FIRST PORT B5</li> <li>65 FIRST PORT B6</li> <li>66 FIRST PORT B7</li> <li>67 FIRST PORT C1</li> <li>69 FIRST PORT C1</li> <li>69 FIRST PORT C3</li> <li>71 FIRST PORT C4</li> <li>72 FIRST PORT C5</li> <li>73 FIRST PORT C7</li> </ul>                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NC 25<br>NC 26<br>NC 27<br>NC 28<br>NC 29<br>NC 30<br>NC 31<br>NC 32<br>NC 33<br>NC 34<br>D/A GND 0 35<br>D/A OUT 0 36<br>D/A GND 1 37<br>D/A OUT 1 38<br>CTR4 CLK 39<br>CTR4 GATE 40<br>CTR4 OUT 41<br>A/D External Pacer 42<br>NC 43<br>NC 44<br>A/D External Trigger In 45<br>NC 46<br>NC 47<br>PC +5V 48<br>NC 49<br>GND 50                             | 75       NC         76       NC         77       NC         78       NC         79       NC         80       CTR6 CLK         81       CTR6 GATE         82       CTR6 OUT         83       NC         84       NC         85       CTR5 CLK         86       CTR5 GATE         87       CTR5 OUT         88       NC         89       GND         90       +12V         91       GND         92       -12V         93       NC         94       NC         95       A/D Internal Pacer Output         96       NC         97       NC         98       NC         99       NC         100       GND |

PCI-DAS1001 & PCI-DAS1002 Connector Diagram 16 Channel, Single-Ended

Figure 2-4. Connector Diagram for PCI-DAS1001 & 1002 - 16-Channel Single-EndedUsage

### 2.4 Connecting Signals to the PCI-DAS1000

The 100-pin connector provides a far greater signal density than the traditional 37-pin Dtype connector. For a mating cable, use the C100FF-2. This cable assembly has a 100-pin connector that fans out to a pair of 50-pin ribbon cables. The two 50-pin ribbon cable legs are terminated with standard 50-pin header connectors. A pair of CIO-MINI50 screw terminal boards, a single CIO-TERM100 screw terminal board or a single SCB-50 breakout box can be used to terminate field signals and route them to the PCI-DAS1000. The BNC16/8 series interface box provides convenient and reliable BNC connections to each of the analog outputs.

There is additional information regarding analog signal connection and configuration at http://www.measurementcomputing.com/signals/signals.pdf.

# **3 Programming & Applications**

# 3.1 Programming Languages

The Universal Library provides complete access to the PCI-DAS1000 functions from the full range of Windows programming languages. If you are planning to write programs, or would like to run the example programs for Visual Basic or any other language, please refer to the Universal Library manual.

## 3.2 Packaged Application Programs

Many packaged application programs, such as SoftWIRE have drivers for the PCI-DAS1000. If the software you use does not have drivers for the PCI-DAS1000, please fax or e-mail the package name and the revision number from the install disks. We will research the package for you and advise how to obtain the necessary drivers.

Some application drivers are included with the Universal Library package, but not with the Application package. If you have purchased an application package directly from the software vendor, you may need to purchase our Universal Library and drivers. Please contact us for more information on this topic.

## 3.3 Register Level Programming

The PCI-DAS1000 is supported by the powerful Universal Library. We strongly recommend that you take advantage of the Universal Library as your software interface. The complexity of registers used for automatic calibration, combined with the PCI BIOS's dynamic allocation of addresses and internal resources, make the PCI-DAS1000 series challenging to program via direct register I/O operations. Direct I/O programming should be attempted only by experienced programmers.

Although the PCI-DAS1000 is part of the larger DAS family, there is no correspondence between register locations of the PCI-DAS1000 and boards in the CIO-DAS16 family. Software written at the register level for the other DAS boards will not work with the PCI-DAS1000. However, software based on the Universal Library should work with the PCI-DAS1000 with few or no changes.

If you decide that register level programming is required for your application, information on the register functions can be found at http://www.measurementcomputing.com/registermaps/.

# 4 Calibration

The PCI-DAS1000 is shipped fully-calibrated from the factory with calibration coefficients stored in nvRAM. At run time, these calibration factors are loaded into system memory and are automatically retrieved each time a different DAC/ADC range is specified. The user has the option to recalibrate with respect to the factory-measured voltage standards at any time by selecting the "Calibrate" option in InstaCal. Full calibration typically requires less than two minutes and requires no other user intervention.

## 4.1 Calibration Configuration - Analog Inputs

The PCI-DAS1000 provides self-calibration for the analog input and measurement circuits, eliminating the need for external equipment and user adjustments. All adjustments are made via 8-bit calibration DACs or 7-bit digital potentiometers referenced to an on-board factory-calibrated standard. Calibration factors are stored on the serial nvRAM.

A variety of methods are used to calibrate the different elements on the board. The analog front-end has several software "knobs" to turn. Offset calibration is performed in the instrumentation amplifier gain stage. Front-end gain adjustment is performed via a variable attenuator/gain stage.

Figure 4-1 is a block diagram of the analog input front-end calibration system:



Figure 4-1. Analog Front-End Calibration Block Diagram

#### 4.2 Calibration Configuration - Analog Outputs (PCI-DAS1001 & PCI-DAS1002 Only)

The calibration scheme for analog outputs is in Figure 4-2. The function is duplicated for DAC0 and DAC1.



Figure 4-2. Analog Output Calibration Block Diagram - PCI-DAS1001 and PCI-DAS1002 Only

# 5 Specifications: PCI-DAS1000 & 1001

Typical for 25°C unless otherwise specified

#### **Power Consumption**

| +5V Operating (A/D converting to FIFO) | 0.8A typical, 1.0A max |
|----------------------------------------|------------------------|
|                                        |                        |

#### **Analog input Section**

| A/D converter type   | 7800                                                |
|----------------------|-----------------------------------------------------|
| Resolution           | 12 bits                                             |
| Number of channels   | 8 differential or 16 single-ended, software         |
|                      | selectable                                          |
| Input Ranges         | ±10V, ±5V, ±2.5V, ±1.25V, 0 to 10V, 0               |
| PCI-DAS1000          | to 5V, 0 to 2.5V, 0 to 1.25V                        |
|                      | fully programmable                                  |
|                      |                                                     |
| PCI-DAS1001          | $\pm 10V, \pm 1V, \pm 0.1V, \pm 0.01V, 0$ to 10V, 0 |
|                      | to 1V, 0 to 0.1V, 0 to 0.01V                        |
|                      | fully programmable                                  |
| Polarity             | Unipolar/Bipolar, software selectable               |
| A/D pacing           | Programmable: internal counter or                   |
|                      | external source (A/D External Pacer,                |
|                      | positive or negative edge selectable by             |
|                      | software) or software polled                        |
| Burstmode            |                                                     |
| PCI-DAS1000          | Software selectable option, rate = $4\mu s$         |
| PCI-DAS1001          | Software selectable option, rate = $6.67 \mu s$     |
| A/D Trigger sources  | External digital (A/D External Trigger)             |
| A/D Triggering Modes |                                                     |
| Digital:             | Software enabled, rising edge, hardware             |
|                      | trigger                                             |
| Pre-trigger:         | Unlimited pre- and post-trigger samples.            |
|                      | Total # of samples must be $> 512$ .                |
| Data transfer:       | From 1024-sample FIFO via REPINSW,                  |
|                      | interrupt, or software polled                       |
| A/D conversion time: | 3 μs                                                |

| Throughput                                     |                                           |
|------------------------------------------------|-------------------------------------------|
| PCI-DAS1001                                    | 150 kHz                                   |
| PCI-DAS1000                                    | 250 kHz                                   |
| Relative Accuracy                              | ±1.5 LSB                                  |
| Differential Linearity error:                  | ±0.75 LSB                                 |
| Integral Linearity error                       | $\pm 0.5$ LSB typ, $\pm 1.5$ LSB max      |
| Gain Error (relative to calibration            |                                           |
| reference)                                     |                                           |
| 0.01V Range                                    | $\pm 0.4\%$ of reading Max                |
| All other Ranges                               | $\pm 0.02\%$ of reading Max               |
| No missing codes guaranteed                    | 12 bits                                   |
| Calibration                                    | Auto-calibration, calibration factors for |
|                                                | each range stored on board in non-        |
|                                                | volatile RAM                              |
| Gain drift (A/D specs)                         | ±6ppm/°C                                  |
| Zero drift (A/D specs)                         | ±1ppm/°C                                  |
| Common Mode Range                              | ±10V                                      |
| CMRR @ 60Hz                                    | 70dB                                      |
| Input leakage current                          | 200nA                                     |
| Input impedance                                | 10Meg Ohms Min                            |
| Absolute maximum input voltage                 |                                           |
| PCI-DAS1001                                    | ±35V                                      |
| PCI-DAS1000                                    | Channels 1-15: -40V to +55V power on      |
|                                                | or off                                    |
|                                                | Channel $0: \pm 15V$                      |
| Noise Distribution (Rate = $1-250$ KHz,        |                                           |
| Average % $\pm 2$ bins, Average % $\pm 1$ bin, |                                           |
| Average # bins)                                |                                           |
| PCI-DAS1000                                    |                                           |
| All Bipolar ranges                             | 100% / 99.5% / 4 bins                     |
| All Unipolar ranges                            | 100% / 99% / 5 bins                       |
| PCI-DAS1001                                    |                                           |
| 10V Ranges                                     | 3 bins (100%)                             |
| 1V Ranges                                      | 4 bins (100%)                             |
| 0.1V Ranges                                    | 10 bins (100%)                            |
| Bipolar 0.01V Range                            | 20 bins (100%)                            |
| Unipolar 0.01V Range                           | 32 bins (100%)                            |

# Analog Output (PCI-DAS1001 only)

| D/A type            | AD7847AR                                   |
|---------------------|--------------------------------------------|
| Resolution          | 12 bits                                    |
| Number of channels: | 2                                          |
| Output Ranges       | $\pm 10V, \pm 5V, 0$ to 5V, 0 to 10V. Each |
|                     | channel independently programmable.        |

| D/A pacing                | Software                                              |
|---------------------------|-------------------------------------------------------|
| Data transfer             | Programmed I/O.                                       |
| Offset error              | $\pm 600 \mu V \text{ max}$ , all ranges (calibrated) |
| Gain error                | ±0.02% FSR max (calibrated)                           |
| Differential nonlinearity | ±1LSB max                                             |
| Integral nonlinearity     | ±1LSB max                                             |
| Monotonicity              | 12 bits                                               |
| D/A Gain drift            | ±2 ppm/°C max                                         |
| D/A Bipolar offset drift  | ±5 ppm/°C max                                         |
| D/A Unipolar offset drift | ±5 ppm/°C max                                         |

| Throughput                            | PC-dependent |
|---------------------------------------|--------------|
| Settling time (to 0.01% of 10V step): | 4μs typ      |
| Slew Rate                             | 7V/μS        |

| Current Drive                 | ±5 mA min        |
|-------------------------------|------------------|
| Output short-circuit duration | 25 mA indefinite |
| Output Coupling               | DC               |
| Amp Output Impedance          | 0.1 Ohms max     |

| Minarilanaana | Demonstration of an extension of the strength of the |
|---------------|------------------------------------------------------|
| Miscellaneous | Power up and reset, all DAC's cleared to             |
|               | 0 volts, $\pm 200 \text{mV}$                         |

# **Digital Input / Output**

| Digital Type           | 82C55A                                 |
|------------------------|----------------------------------------|
| Configuration          | 2 banks of 8, 2 banks of 4,            |
|                        | programmable by bank as input or       |
|                        | output                                 |
| Number of channels     | 24 I/O                                 |
| Output High            | 3.0 volts min @ -2.5mA                 |
| Output Low             | 0.4 volts max @ 2.5 mA                 |
| Input High             | 2.0 volts min, +5.5 volts absolute max |
| Input Low              | 0.8 volts max, -0.5 volts absolute min |
| Power-up / reset state | Input mode (high impedance)            |
| Interrupts             | INTA# - mapped to IRQn via PCI BIOS    |
|                        | at boot-time                           |
| Interrupt enable       | Programmable                           |
| Interrupt sources      | Residual counter, End-of-channel-scan, |
|                        | AD-FIFO-not-empty, AD-FIFO-half-full   |

#### **Counter section**

| Counter type  | 82C54                                            |
|---------------|--------------------------------------------------|
| Configuration | Two 82C54 devices. 3 down counters per 82C54, 16 |
|               | bits each                                        |
| 82C54A:       | Counter 0: ADC residual sample counter.          |
|               | Source: ADC Clock Gate: Internal                 |
|               | programmable source                              |
|               | Output: End-of-Acquisition interrupt             |
|               | Counter 1: ADC Pacer Lower Divider               |
|               | Source: 10 MHz oscillator                        |
|               | Gate: Tied to Counter 2 gate, programmable       |
|               | source.                                          |
|               | Output: Chained to Counter 2 Clock.              |
|               | Counter 2: ADC Pacer Upper Divider               |
|               | Source: Counter 1 Output.                        |
|               | Gate: Tied to Counter 1 gate,                    |
|               | programmable source.                             |
|               | Output: ADC Pacer clock (if                      |
|               | software selected),                              |
|               | available at user                                |
|               | connector (A/D                                   |
|               | Internal Pacer Output).                          |

| 82C54B:                 | Counter 0: Pretri | igger Mode                                  |
|-------------------------|-------------------|---------------------------------------------|
|                         | Source:           | ADC Clock.                                  |
|                         | Gate:             | External trigger                            |
|                         | Output:           | End-of-Acquisition                          |
|                         |                   | interrupt                                   |
|                         | Counter 0 - User  | Counter 4 (when in non-Pretrigger           |
|                         | Mode)             |                                             |
|                         | Source:           | User input at 100pin connector              |
|                         |                   | (CTR4 CLK) or internal 10MHz                |
|                         |                   | (software selectable)                       |
|                         | Gate:             | User input at 100pin                        |
|                         |                   | connector (CTR4 GATE)                       |
|                         | Output:           | Available at 100pin connector               |
|                         |                   | (CTR4 OUT)                                  |
|                         | Counter 1: User   | Counter 5                                   |
|                         | Source:           | User input at 100pin connector              |
|                         |                   | (CTR5 CLK)                                  |
|                         | Gate:             | User input at 100pin connector              |
|                         |                   | (CTR5 GATE)                                 |
|                         | Output:           | Available at 100pin connector (CTR5<br>OUT) |
|                         | Counter 2: User   | Counter 6                                   |
|                         | Source:           | User input at 100pin connector (CTR6        |
|                         |                   | CLK)                                        |
|                         | Gate:             | User input at 100pin connector              |
|                         |                   | (CTR6 GATE)                                 |
|                         | Output:           | Available at 100pin connector (CTR6         |
|                         |                   | OUT)                                        |
| Clock input frequency   | 10 Mhz max        |                                             |
| High pulse width (clock | 30 ns min         |                                             |
| input)                  |                   |                                             |
| Low pulse width (clock  | 50 ns min         |                                             |
| input)                  |                   |                                             |
| Gate width high         | 50 ns min         |                                             |
| Gate width low          | 50 ns min         |                                             |
| Input low voltage       | 0.8V max          |                                             |
| Input high voltage      | 2.0V min          |                                             |
| Output low voltage      | 0.4V max          |                                             |
| Output high voltage     | 3.0V min          |                                             |

#### Environmental

| Operating temperature range | 0 to 70°C               |
|-----------------------------|-------------------------|
| Storage temperature range   | -40 to 100°C            |
| Humidity                    | 0 to 90% non-condensing |

# 6 Specifications: PCI-DAS1002

Typical for 25°C unless otherwise specified.

#### **Power consumption**

| +5V | 0.8A typical, 1.0A max |
|-----|------------------------|
|-----|------------------------|

#### Analog input section

| A/D converter type             | ADS7800 or equivalent                                                                      |
|--------------------------------|--------------------------------------------------------------------------------------------|
| Resolution                     | 12 bits                                                                                    |
| Number of channels             | 16 single-ended / 8 differential, software selectable                                      |
| Input ranges                   | ±10V, ±5V, ±2.5V, ±1.25V, 0 to 10V, 0 to 5V, 0 to 2.5V, 0 to 1.25V software programmable   |
| A/D pacing                     | Internal counter - 82C54.                                                                  |
| (software programmable)        | External source (A/D External Pacer) software programmable for rising or falling edge      |
|                                | Software polled                                                                            |
| A/D trigger sources            | External edge trigger (A/D External Trigger)                                               |
| A/D triggering modes           | Rising or falling edge trigger - software selectable                                       |
| A/D pre-trigger mode           | Unlimited pre- and post-trigger samples. Total number of samples must be greater than 512. |
| Burst mode                     | Software selectable option, burst rate = 150kHz                                            |
| Data transfer                  | From 1024 sample FIFO via REPINSW                                                          |
|                                | Programmed I/O                                                                             |
| A/D conversion time            | 3µs max                                                                                    |
| Analog front end settling time | 6µs for a full scale step to 1 LSB                                                         |
| Calibrated throughput          | 200KHz                                                                                     |
| Calibration                    | Auto-calibration, calibration factors for each range stored on board in nonvolatile RAM    |

#### Accuracy

Accuracies are listed for a 200KHz sampling rate, 100 sample average, single channel operation, a 15 minute warm-up, and operational temperatures within  $\pm 2$ degC of internal calibration temperature. The calibrator test source high side is tied to Channel 0 In and the low side tied to AGND.

| Range       | Absolute Accuracy |
|-------------|-------------------|
| ±10.00V     | ±2.5 LSB max      |
| ±5.000V     | ±2.5 LSB max      |
| ±2.500V     | ±2.5 LSB max      |
| ±1.250V     | ±2.5 LSB max      |
| 0 to 10.00V | ±2.5 LSB max      |
| 0 to 5.000V | ±2.5 LSB max      |
| 0 to 2.500V | ±2.5 LSB max      |
| 0 to 1.250V | ±2.5 LSB max      |

Table 1 – *Absolute Accuracy* 

Each PCI-DAS1002 is tested at the factory to assure the board's overall error does not exceed accuracy limits described in *Table 1* above.

| Table 2 – | Calibrated | Accuracy    | Components | (in | LSB) |
|-----------|------------|-------------|------------|-----|------|
| 1 4010 -  |            | 12000000000 | 00         |     |      |

| Range      | Gain Error | Offset Error | DLE       | ILE      |
|------------|------------|--------------|-----------|----------|
| All ranges | ±1.0 max   | ±1.0 max     | ±0.75 max | ±0.5 max |

As shown in *Table 2*, total board error is a combination of Gain, Offset, Differential Linearity and Integral Linearity error. The theoretical worst-case error of the board may be calculated by summing these component errors. Worst case errors are realized only in the unlikely event that each of the component errors are at their maximum level, and causing error in the same direction.

#### Crosstalk

Crosstalk is defined here as the influence of one channel upon another when scanning two channels at the maximum rate. A full scale 100Hz triangle wave is input on Channel 1; Channel 0 is tied to Analog Ground at the 100 pin user connector. The table below summarizes the influence of Channel 1 on Channel 0 with the effects of noise removed. The residue on Channel zero is described in LSB's.

| Condition  | Crosstalk              | Per channel Rate | ADC Rate |
|------------|------------------------|------------------|----------|
| All Ranges | 2 LSB <sub>pk-pk</sub> | 100 KHz          | 200 KHz  |

| A/D Full-Scale Gain drift | ±0.25 LSB/°C max |
|---------------------------|------------------|
| A/D Zero drift            | ±0.25 LSB/°C max |
| Common Mode Range         | ±10V min         |
| CMRR @ 60Hz               | -70dB min        |
| Input leakage current     | ±20nA max        |
| Input impedance           | 10 MOhms min     |
| Absolute maximum input    | ±35 volts        |
| voltage                   |                  |
| Warm-up time              | 15 minutes       |

#### **Noise Performance**

*Table 3* below summarizes the noise performance for the PCI-DAS1002. Noise distribution is determined by gathering 50K samples at 200kHz with inputs tied to ground at the user connector.

 Table 3 – Board Noise Performance

| Range            | % within ±2 LSB | % within ±1 LSB | LSBs | LSBrms* |
|------------------|-----------------|-----------------|------|---------|
| 0 to 1.250V      | 100%            | 99%             | 4    | 0.61    |
| All other ranges | 100%            | 100%            | 3    | 0.45    |

\* RMS noise is defined as the peak-to-peak bin spread divided by 6.6

#### Analog output section

| D/A converter type | AD7847AR or equivalent                                                                                 |
|--------------------|--------------------------------------------------------------------------------------------------------|
| Resolution         | 12 bits                                                                                                |
| Number of channels | 2                                                                                                      |
| Configuration      | Voltage Output, Single-ended                                                                           |
| Output Range       | $\pm 10V, \pm 5V, 0$ to 10V, or 0 to 5V. Software selectable. Each channel independently programmable. |
| D/A pacing         | Software                                                                                               |
| Data transfer      | Programmed I/O                                                                                         |

#### **Absolute Accuracy**

| All Ranges ± | 3 LSB |
|--------------|-------|
|--------------|-------|

#### **Calibrated Accuracy Components**

| Gain Error                   | ±1.0 LSB max |
|------------------------------|--------------|
| Offset Error                 | ±0.5LSB max  |
| Integral Linearity Error     | ±1.0 LSB max |
| Differential Linearity Error | ±1.0 LSB max |

Each PCI-DAS1002 is tested at the factory to assure absolute accuracy.

Total board error is a combination of Gain, Offset, Integral Linearity and Differential Linearity error. The theoretical worst-case error of the board may be calculated by summing these component errors. Worst case error is realized only in the unlikely event that each of the component errors are at their maximum level, and causing error in the same direction. Although an examination of the chart and a summation of the maximum theoretical errors shows that the board could theoretically exhibit a ±3.5 LSB error, our testing assures this error is never realized in a board that we ship.

| Monotonicity                  | Guaranteed monotonic over temperature        |
|-------------------------------|----------------------------------------------|
| Overall Analog Output drift   | ±0.03 LSB/°C max                             |
| Settling time                 | 4µs to 0.01% of 10V step                     |
| Slew Rate                     | 7V/µs min                                    |
| Current Drive                 | ±5 mA min                                    |
| Output short-circuit duration | Indefinite @25mA                             |
| Output coupling               | DC                                           |
| Output impedance              | 0.1 ohms max                                 |
| Miscellaneous                 | Double buffered output latches               |
|                               | Output voltage on power up and reset: ±200mV |

#### **Counter section**

| Counter type                        | 82C54                                         |                                                                                    |
|-------------------------------------|-----------------------------------------------|------------------------------------------------------------------------------------|
| Configuration                       | Two 82C54 devices, 3 down counters per 82C54, |                                                                                    |
|                                     | 16 bits eac                                   | ch                                                                                 |
| <b>Counter 1</b> – ADC residual     | Source:                                       | ADC clock                                                                          |
| sample counter                      | Gate:                                         | Internal programmable source                                                       |
|                                     | Output:                                       | End of acquisition interrupt                                                       |
| Counter 2 - ADC Pacer Lower         | Source:                                       | 10 MHz internal source                                                             |
| Divider                             | Gate:                                         | Internal, programmable on/off                                                      |
|                                     | Output:                                       | Chained to Counter 3 Clock                                                         |
| Counter 3 - ADC Pacer Upper         | Source:                                       | Counter 2 Output                                                                   |
| Divider                             | Gate:                                         | Internal, programmable on/off                                                      |
|                                     | Output:                                       | Programmable as ADC Pacer clock.<br>Available at user connector (ADC<br>Pacer out) |
| <b>Counter 4</b> – Pre-trigger mode | Source:                                       | ADC clock for pre-trigger mode                                                     |
|                                     | Gate:                                         | External trigger for pre-trigger mode                                              |
|                                     | Output:                                       | End of acquisition interrupt for pre-<br>trigger mode                              |
| Counter 4 – Non-Pre-Trigger         | Source:                                       | External at connector (CTR4 CLK)                                                   |
| mode                                | Gate:                                         | External at connector (CTR4 GATE)                                                  |
|                                     | Output:                                       | Available at connector (CTR4 OUT)                                                  |
| Counter 5 - User counter            | Source:                                       | External at connector (CTR5 CLK)                                                   |
|                                     | Gate:                                         | External at connector (CTR5 GATE)                                                  |
|                                     | Output:                                       | Available at connector (CTR5 OUT)                                                  |
| Counter 6 - User counter            | Source:                                       | External at connector (CTR6 CLK)                                                   |
|                                     | Gate:                                         | External at connector (CTR6 GATE)                                                  |
|                                     | Output:                                       | Available at connector (CTR6 OUT)                                                  |
| Clock input frequency               | 10Mhz max                                     |                                                                                    |
| High pulse width (clock input)      | 30ns min                                      |                                                                                    |
| Low pulse width (clock input)       | 50ns min                                      |                                                                                    |
| Gate width high                     | 50ns min                                      |                                                                                    |
| Gate width low                      | 50ns min                                      |                                                                                    |
| Input low voltage                   | 0.8V max                                      |                                                                                    |
| Input high voltage                  | 2.0V min                                      |                                                                                    |
| Output low voltage                  | 0.4V max                                      |                                                                                    |

| Output high voltage          | 3.0V min |
|------------------------------|----------|
| Crystal Oscillator Frequency | 10MHz    |
| Frequency accuracy           | 50ppm    |

# Digital input/output section

| Digital Type                           | 82C55                              |
|----------------------------------------|------------------------------------|
| Number of I/O                          | 24 (Port A0 through Port C7)       |
| Configuration                          | • 2 banks of 8 and 2 banks of 4 or |
|                                        | • 3 banks of 8 or                  |
|                                        | • 2 banks of 8 with handshake      |
| Input high voltage                     | 2.0V min, 5.5V absolute max        |
| Input low voltage                      | 0.8V max, -0.5V absolute min       |
| Output high voltage ( $IOH = -2.5mA$ ) | 3.0V min                           |
| Output low voltage (IOL = $2.5$ mA)    | 0.4V max                           |
| Power-up / reset state                 | Input mode (high impedance)        |

#### Interrupt section

| Interrupts        | PCI INTA# - mapped to IRQn via PCI BIOS at boot-time                                                                                                    |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Interrupt enable  | Programmable. Default = disabled.                                                                                                                       |
| Interrupt sources | <ul> <li>Residual sample counter</li> <li>A/D End-of-channel-scan</li> <li>A/D FIFO-not-empty</li> <li>A/D FIFO-half-full</li> <li>A/D Pacer</li> </ul> |

#### **Miscellaneous**

| +5 Volts  | Available at I\O connector (PC+5V)   |
|-----------|--------------------------------------|
| +12 Volts | Available at I\O connector (PC +12V) |
| -12 Volts | Available at I\O connector (PC -12V) |

#### Environmental

| Operating Temperature Range | 0 to 70°C               |
|-----------------------------|-------------------------|
| Storage Temperature Range   | -40 to 100°C            |
| Humidity                    | 0 to 95% non-condensing |

#### Mechanical

| Card dimensions | PCI half card: 174.63mm(L) x 106.86mm(H) |
|-----------------|------------------------------------------|
|                 | x 14.48mm(D)                             |

#### **Connector and Pin Out**

#### 8 Channel Differential Mode

| Pin | Signal Name             | Pin | Signal Name               |
|-----|-------------------------|-----|---------------------------|
| 1   | LLGND                   | 51  | FIRST PORT A 0            |
| 2   | CH0 HI                  | 52  | FIRST PORT A 1            |
| 3   | CH0 LO                  | 53  | FIRST PORT A 2            |
| 4   | CH1 HI                  | 54  | FIRST PORT A 3            |
| 5   | CH1 LO                  | 55  | FIRST PORT A 4            |
| 6   | CH2 HI                  | 56  | FIRST PORT A 5            |
| 7   | CH2 LO                  | 57  | FIRST PORT A 6            |
| 8   | CH3 HI                  | 58  | FIRST PORT A 7            |
| 9   | CH310                   | 59  | FIRST PORT B 0            |
| 10  | CH4 HI                  | 60  | FIRST PORT B 1            |
| 11  | CH410                   | 61  | FIRST PORT B 2            |
| 12  | CH5 HI                  | 62  | FIRST PORT B 3            |
| 13  | CH510                   | 63  | FIRST PORT B 4            |
| 14  | CHE HI                  | 64  | FIRST PORT B 5            |
| 15  |                         | 65  | FIRST PORT B 6            |
| 16  |                         | 66  | FIRST PORT B 7            |
| 17  |                         | 67  | FIRST PORT C 0            |
| 10  |                         | 69  |                           |
| 10  | N/C                     | 60  |                           |
| 20  | N/C                     | 70  |                           |
| 20  | N/C                     | 70  |                           |
| 21  | N/C                     | 70  |                           |
| 22  | N/C                     | 72  |                           |
| 23  | N/C                     | 73  |                           |
| 24  | N/C                     | 74  | FIRST PORT C 7            |
| 25  | N/C                     | 75  | N/C                       |
| 20  | N/C                     | 76  | N/C                       |
| 27  | N/C                     | 70  | N/C                       |
| 28  | N/C                     | 78  | N/C                       |
| 29  | N/C                     | 79  |                           |
| 30  | N/C                     | 80  |                           |
| 31  | N/C                     | 81  |                           |
| 32  | N/C                     | 82  |                           |
| 33  | N/C                     | 83  | N/C                       |
| 34  |                         | 84  |                           |
| 35  | D/A GND 0               | 85  |                           |
| 36  |                         | 86  | CTR5 GATE                 |
| 37  | D/A GND 1               | 87  |                           |
| 38  |                         | 88  | N/C                       |
| 39  |                         | 89  | GND                       |
| 40  |                         | 90  | +12V                      |
| 41  | CIR4 OUT                | 91  | GND                       |
| 42  | A/D EXTERNAL PACER      | 92  | -12V                      |
| 43  | N/C                     | 93  | N/C                       |
| 44  | N/C                     | 94  | N/C                       |
| 45  | A/D EXTERNAL TRIGGER IN | 95  | A/D INTERNAL PACER OUTPUT |
| 46  | N/C                     | 96  | N/C                       |
| 47  | N/C                     | 97  | N/C                       |
| 48  | PC +5V                  | 98  | N/C                       |
| 49  | N/C                     | 99  | N/C                       |
| 50  | GND                     | 100 | GND                       |

#### 16 Channel Single-Ended Mode

| Pin | Signal Name             | Pin | Signal Name               |
|-----|-------------------------|-----|---------------------------|
| 1   | LLGND                   | 51  | FIRST PORT A 0            |
| 2   | CH0 HI                  | 52  | FIRST PORT A 1            |
| 3   | CH8 HI                  | 53  | FIRST PORT A 2            |
| 4   | CH1 HI                  | 54  | FIRST PORT A 3            |
| 5   | CH9 HI                  | 55  | FIRST PORT A 4            |
| 6   | CH2 HI                  | 56  | FIRST PORT A 5            |
| 7   | CH10 HI                 | 57  | FIRST PORT A 6            |
| 8   | CH3 HI                  | 58  | FIRST PORT A 7            |
| 9   | CH11 HI                 | 59  | FIRST PORT B 0            |
| 10  | CH4 HI                  | 60  | FIRST PORT B 1            |
| 11  | CH12 HI                 | 61  | FIRST PORT B 2            |
| 12  | CH5 HI                  | 62  | FIRST PORT B 3            |
| 13  | CH13 HI                 | 63  | FIRST PORT B 4            |
| 14  | CH6 HI                  | 64  | FIRST PORT B 5            |
| 15  | CH14 HI                 | 65  | FIRST PORT B 6            |
| 16  |                         | 66  |                           |
| 17  |                         | 67  |                           |
| 18  |                         | 68  |                           |
| 10  | N/C                     | 60  |                           |
| 20  | N/C                     | 70  |                           |
| 20  | N/C                     | 70  |                           |
| 21  | N/C                     | 70  |                           |
| 22  | N/C                     | 72  |                           |
| 23  | N/C                     | 73  |                           |
| 24  | N/C                     | 74  | FIRST PORT C 7            |
| 20  | N/C                     | 75  | N/C                       |
| 20  | N/C                     | 70  | N/C                       |
| 27  | N/C                     | 70  | N/C                       |
| 20  | N/C                     | 70  | N/C                       |
| 29  | N/C                     | 79  |                           |
| 30  | N/C                     | 80  |                           |
| 31  | N/C                     | 81  |                           |
| 32  | N/C                     | 82  |                           |
| 33  | N/C                     | 83  | N/C                       |
| 34  | N/C                     | 84  |                           |
| 35  | D/A GND 0               | 85  | CTR5 CLK                  |
| 36  |                         | 86  | CTR5 GATE                 |
| 37  | D/A GND 1               | 87  |                           |
| 38  | D/A OUT 1               | 88  | N/C                       |
| 39  | CTR4 CLK                | 89  | GND                       |
| 40  | CTR4 GATE               | 90  | +12V                      |
| 41  | CTR4 OUT                | 91  | GND                       |
| 42  | A/D EXTERNAL PACER      | 92  | -12V                      |
| 43  | N/C                     | 93  | N/C                       |
| 44  | N/C                     | 94  | N/C                       |
| 45  | A/D EXTERNAL TRIGGER IN | 95  | A/D INTERNAL PACER OUTPUT |
| 46  | N/C                     | 96  | N/C                       |
| 47  | N/C                     | 97  | N/C                       |
| 48  | PC +5V                  | 98  | N/C                       |
| 49  | N/C                     | 99  | N/C                       |
| 50  | GND                     | 100 | GND                       |

#### **EC Declaration of Conformity**

We, Measurement Computing Corporation, declare under sole responsibility that the products:

| Part Number | Description                                   |
|-------------|-----------------------------------------------|
| PCI-DAS1000 | High speed analog input board for the PCI bus |
| PCI-DAS1001 | High speed analog input board for the PCI bus |
| PCI-DAS1002 | High speed analog input board for the PCI bus |

to which this declaration relates, meets the essential requirements, is in conformity with, and CE marking has been applied according to the relevant EC Directives listed below using the relevant section of the following EC standards and other normative documents:

**EU EMC Directive 89/336/EEC:** Essential requirements relating to electromagnetic compatibility.

EU 55022 Class B: Limits and methods of measurements of radio interference characteristics of information technology equipment.

EN 50082-1: EC generic immunity requirements.

**IEC 801-2**: Electrostatic discharge requirements for industrial process measurement and control equipment.

**IEC 801-3**: Radiated electromagnetic field requirements for industrial process measurements and control equipment.

**IEC 801-4**: Electrically fast transients for industrial process measurement and control equipment.

Carl Haapaoja, Director of Quality Assurance

Measurement Computing Corporation 16 Commerce Boulevard, Middleboro, Massachusetts 02346 (508) 946-5100 Fax: (508) 946-9500 E-mail: info@measurementcomputing.com www. measurementcomputing.com