Specifications

PCI-DAS1002

Revision 1.2, June, 2005 © Copyright 2005, Measurement Computing Corporation

Specifications

Typical for 25 °C unless otherwise specified. Specifications in *italic text* are guaranteed by design.

Analog input section

Parameter	Specification	
A/D converter type	ADS7800 or equivalent	
Resolution	12 bits	
Number of channels	16 single-ended / 8 differential, software selectable	
Input ranges	±10 V, ±5 V, ±2.5 V, ±1.25 V, 0 to 10 V, 0 to 5V, 0 to 2.5 V, 0 to 1.25 V software programmable	
A/D pacing	Internal counter - 82C54.	
(software programmable)	External source (A/D External Pacer)	
	software programmable for rising or falling edge	
	Software polled	
A/D trigger sources	External edge trigger (A/D EXTERNAL TRIGGER)	
A/D triggering modes	Rising edge trigger	
A/D pre-trigger mode	Unlimited pre- and post-trigger samples. Total number of samples must be greater than 512.	
Burst mode	Software selectable option, burst rate = 150 kHz	
Data transfer	From 1024 sample FIFO via REPINSW	
	Programmed I/O	
A/D conversion time	3 µs max	
Analog front end settling time	6 µs for a full scale step to 1 LSB	
Calibrated throughput	200 kHz	
Calibration	Auto-calibration, calibration factors for each range stored on board in nonvolatile RAM	
A/D full-scale gain drift	±0.25 LSB/°C max	
A/D zero drift	±0.25 LSB/°C max	
Common mode range	±10 V min	
CMRR @ 60 Hz	-70 dB min	
Input leakage current	$\pm 20 nA max$	
Input impedance	10 MOhms min	
Absolute maximum input voltage	±35 volts	
Warm-up time	15 minutes	

Table 1. Analog input specifications

Accuracy

Accuracies are listed for a 200 kHz sampling rate, 100 sample average, single channel operation, a 15 minute warm-up, and operational temperatures within ± 2 °C of internal calibration temperature. The calibrator test source high side is tied to Channel 0 In and the low side tied to AGND.

Range	Absolute Accuracy
±10.00 V	±2.5 LSB max
±5.000 V	±2.5 LSB max
±2.500 V	±2.5 LSB max
±1.250 V	±2.5 LSB max
0 to 10.00 V	±2.5 LSB max
0 to 5.000 V	±2.5 LSB max
0 to 2.500 V	±2.5 LSB max
0 to 1.250 V	±2.5 LSB max

 Table 2. Absolute accuracy specifications (analog input)

Each PCI-DAS1002 is tested at the factory to assure the board's overall error does not exceed accuracy limits described in Table 2 above.

Table 3. Calibrated accuracy components (in LSB)

Range	Gain Error	Offset Error	DLE	ILE
All ranges	±1.0 max	±1.0 max	±0.75 max	±0.5 max

As shown in Table 3, total board error is a combination of gain, offset, differential linearity and integral linearity error. The theoretical worst-case error of the board may be calculated by summing these component errors. Worst case errors are realized only in the unlikely event that each of the component errors are at their maximum level, and causing error in the same direction.

Crosstalk

Crosstalk is defined here as the influence of one channel upon another when scanning two channels at the maximum rate. A full scale 100 Hz triangle wave is input on channel 1; Channel 0 is tied to analog ground at the 100-pin user connector. The table below summarizes the influence of channel 1 on channel 0 with the effects of noise removed. The residue on channel zero is described in LSB's.

Condition	Crosstalk	Per channel Rate	ADC Rate
All ranges	2 LSB _{pk-pk}	100 kHz	200 kHz

Noise Performance

Table 5 below summarizes the noise performance for the PCI-DAS1002. Noise distribution is determined by gathering 50 K samples at 200 kHz with inputs tied to ground at the user connector.

Range	% within ±2 LSB	% within ±1 LSB	LSBs	LSBrms*
0 to 1.250 V	100%	99%	4	0.61
All other ranges	100%	100%	3	0.45

Table 5. Board noise performance

* RMS noise is defined as the peak-to-peak bin spread divided by 6.6.

Analog output section

D/A converter type	AD7847AR or equivalent	
Resolution	12 bits	
Number of channels	2	
Configuration	Voltage output, single-ended	
Output range	± 10 V, ± 5 V, 0 to 10 V, or 0 to 5 V. Software selectable. Each channel independently	
	programmable.	
D/A pacing	Software	
Data transfer	Programmed I/O	
Monotonicity	Guaranteed monotonic over temperature	
Overall analog output drift	±0.03 LSB/°C max	
Settling time	4 µs to 0.01% of 10 V step	
Slew rate	7 V/μs min	
Current drive	±5 mA min	
Output short-circuit duration	Indefinite @25 mA	
Output coupling	DC	
Output impedance	0.1 Ohm, max	
Miscellaneous	Double buffered output latches	
	Output voltage on power up and reset: ±200 mV	

Table 6. Analog output specifications

Absolute accuracy

Table 7. Absolute accuracy specifications (analog output)

All ranges ±3 LSB

Calibrated accuracy components

Table 8. Calibrated accuracy specifications (analog output)

Gain error	±1.0 LSB max
Offset error	±0.5LSB max
Integral linearity error	±1.0 LSB max
Differential linearity error	$\pm 1.0 LSB max$

Each PCI-DAS1002 is tested at the factory to assure absolute accuracy.

Total analog output error is a combination of gain, offset, integral linearity and differential linearity error. The theoretical worst-case error of the board may be calculated by summing these component errors. Worst case error is realized only in the unlikely event that each of the component errors are at their maximum level, and causing error in the same direction. Although an examination of the chart and a summation of the maximum theoretical errors shows that the board could theoretically exhibit a ± 3.5 LSB error, our testing assures this error is never realized in a board that we ship.

Counter section

Counter type	82C54	
Configuration	Two 82C54 devices, 3 down counters per 82C54, 16 bits each	
Counter 1 — ADC residual sample counter	Source: ADC clock	
	Gate: Internal programmable source	
	Output: End of acquisition interrupt	
Counter 2 — ADC pacer lower divider	Source: 10 MHz internal source	
	Gate: Internal, programmable on/off	
	Output: Chained to counter 3 clock	
Counter 3 — ADC pacer upper divider	Source: Counter 2 output	
	Gate: Internal, programmable on/off	
	Output: Programmable as ADC pacer clock. Available at user	
	connector (ADC pacer out)	
Counter 4 — Pre-trigger mode	Source: ADC clock for pre-trigger mode	
	Gate: External trigger for pre-trigger mode	
	Output: End of acquisition interrupt for pre-trigger mode	
Counter 4 — Non pre-trigger mode	Source: External at connector (CTR4 CLK)	
	Gate: External at connector (CTR4 GATE)	
	Output: Available at connector (CTR4 OUT)	
Counter 5 — User counter	Source: External at connector (CTR5 CLK)	
	Gate: External at connector (CTR5 GATE)	
	Output: Available at connector (CTR5 OUT)	
Counter 6 — User counter	Source: External at connector (CTR6 CLK)	
	Gate: External at connector (CTR6 GATE)	
	Output: Available at connector (CTR6 OUT)	
Clock input frequency	10 MHz max	
High pulse width (clock input)	30 ns min	
Low pulse width (clock input)	50 ns min	
Gate width high	50 ns min	
Gate width low	50 ns min	
Input low voltage	0.8 V max	
Input high voltage	2.0 V min	
Output low voltage	0.4 V max	
Output high voltage	3.0 V min	
Crystal oscillator frequency	10 MHz	
Frequency accuracy	50 ppm	

Table 9. Counter specifications

Digital input/output section

Digital type	82C55	
Number of I/O	24 (FIRSTPORTA Bit 0 through FIRSTPORTC Bit 7)	
Configuration	2 banks of 8 and 2 banks of 4 or	
	3 banks of 8 or	
	2 banks of 8 with handshake	
Input high voltage	2.0 V min, 5.5 V absolute max	
Input low voltage	0.8 V max, -0.5 V absolute min	
Output high voltage ($IOH = -2.5 mA$)	3.0 V min	
<i>Output low voltage (IOL = 2. 5mA)</i>	0.4 V max	
Power-up / reset state	Input mode (high impedance)	

Table 10. DIO specifications

Interrupt section

Table 11. Interrupt specifications

Interrupts	PCI INTA# - mapped to IRQn via PCI BIOS at boot-time
Interrupt enable	Programmable. Default = disabled.
Interrupt sources	Residual sample counter A/D End-of-channel-scan A/D FIFO-not-empty
	A/D FIFO-half-full A/D Pacer

Miscellaneous

Table 12. Micellaneous specifications

+5 Volts	Available at I\O connector (PC +5V)
+12 Volts	Available at I\O connector (PC +12V)
-12 Volts	Available at I\O connector (PC -12V)

Power consumption

Table 13. Power consumption specifications

+5 V 0.8 A typical 1.0 A max	
0.0 A typical, 1.0 A max	+5 V 0.8 A typical, 1.0 A max

Environmental

Table 14. Environmental specifications

Operating temperature range	0 to 70°C
Storage temperature range	-40 to 100°C
Humidity	0 to 95% non-condensing

Mechanical

Table 15. Mechanical specifications

Card dimensions	PCI half card: 174.63 mm (L) x 106.86 mm (H) x 14.48 mm (D)

Connector and pin out

Connector type	100-pin high-density Robinson Nugent	
Compatible cable	C100FF-x, unshielded ribbon cable, $x = 3$ or 6 feet	
Compatible accessory products	s ISO-RACK16/P BNC-16SE	
(with C100FF-x cable)	ISO-DA02/P BNC-16DI	
	CIO-ERB24 (DADP-5037 adaptor required)	CIO-MINI50 (2 required)
	CIO-SERB24/FD (DADP-5037 adaptor required)	CIO-TERM100 (1 required)
	SSR-RACK24 (DADP-5037 adaptor required)	SCB-50 (1 required)

Table 16. Main connector specifications

Table 17. 8-channel differential mode

Pin	Signal Name	Pin	Signal Name
1	LLGND	51	FIRSTPORTA Bit 0
2	CH0 HI	52	FIRSTPORTA Bit 1
3	CH0 LO	53	FIRSTPORTA Bit 2
4	CH1 HI	54	FIRSTPORTA Bit 3
5	CH1 LO	55	FIRSTPORTA Bit 4
6	CH2 HI	56	FIRSTPORTA Bit 5
7	CH2 LO	57	FIRSTPORTA Bit 6
8	CH3 HI	58	FIRSTPORTA Bit 7
9	CH3 LO	59	FIRSTPORTB Bit 0
10	CH4 HI	60	FIRSTPORTB Bit 1
11	CH4 LO	61	FIRSTPORTB Bit 2
12	CH5 HI	62	FIRSTPORTB Bit 3
13	CH5 LO	63	FIRSTPORTB Bit 4
14	CH6 HI	64	FIRSTPORTB Bit 5
15	CH6 LO	65	FIRSTPORTB Bit 6
16	CH7 HI	66	FIRSTPORTB Bit 7
17	CH7 LO	67	FIRSTPORTC Bit 0
18	LLGND	68	FIRSTPORTC Bit 1
19	N/C	69	FIRSTPORTC Bit 2
20	N/C	70	FIRSTPORTC Bit 3
21	N/C	71	FIRSTPORTC Bit 4
22	N/C	72	FIRSTPORTC Bit 5
23	N/C	73	FIRSTPORTC Bit 6
24	N/C	74	FIRSTPORTC Bit 7
25	N/C	75	N/C
26	N/C	76	N/C
27	N/C	77	N/C
28	N/C	78	N/C
29	N/C	79	N/C
30	N/C	80	CTR6 CLK
31	N/C	81	CTR6 GATE
32	N/C	82	CTR6 OUT
33	N/C	83	N/C
34	N/C	84	N/C
35	D/A GND 0	85	CTR5 CLK
36	D/A OUT 0	86	CTR5 GATE
37	D/A GND 1	87	CTR5 OUT
38	D/A OUT 1	88	N/C
39	CTR4 CLK	89	GND
40	CTR4 GATE	90	+12V
41	CTR4 OUT	91	GND
42	A/D EXTERNAL PACER	92	-12V
43	N/C	93	N/C
44	N/C	94	N/C
45	A/D EXTERNAL TRIGGER IN	95	A/D INTERNAL PACER OUTPUT
46	N/C	96	N/C
47	N/C	97	N/C
48	PC +5V	98	N/C
49	N/C	99	N/C
50	GND	100	GND
50		100	

Pin	Signal Name	Pin	Signal Name
1	LLGND	51	FIRSTPORTA Bit 0
2	CH0 HI	52	FIRSTPORTA Bit 1
3	CH8 HI	53	FIRSTPORTA Bit 2
4	CH1 HI	54	FIRSTPORTA Bit 3
5	CH9 HI	55	FIRSTPORTA Bit 4
6	CH2 HI	56	FIRSTPORTA Bit 5
7	CH10 HI	57	FIRSTPORTA Bit 6
8	CH3 HI	58	FIRSTPORTA Bit 7
9	CH11 HI	59	FIRSTPORTB Bit 0
10	CH4 HI	60	FIRSTPORTB Bit 1
11	CH12 HI	61	FIRSTPORTB Bit 2
12	CH5 HI	62	FIRSTPORTB Bit 3
13	CH13 HI	63	FIRSTPORTB Bit 4
14	CH6 HI	64	FIRSTPORTB Bit 5
15	CH14 HI	65	FIRSTPORTB Bit 6
16	CH7 HI	66	FIRSTPORTB Bit 7
17	CH15 HI	67	FIRSTPORTC Bit 0
18	LLGND	68	FIRSTPORTC Bit 1
19	N/C	69	FIRSTPORTC Bit 2
20	N/C	70	FIRSTPORTC Bit 3
21	N/C	71	FIRSTPORTC Bit 4
22	N/C	72	FIRSTPORTC Bit 5
23	N/C	73	FIRSTPORTC Bit 6
24	N/C	74	FIRSTPORTC Bit 7
25	N/C	75	N/C
26	N/C	76	N/C
27	N/C	77	N/C
28	N/C	78	N/C
29	N/C	79	N/C
30	N/C	80	CTR6 CLK
31	N/C	81	CTR6 GATE
32	N/C	82	CTR6 OUT
33	N/C	83	N/C
34	N/C	84	N/C
35	D/A GND 0	85	CTR5 CLK
36	D/A OUT 0	86	CTR5 GATE
37	D/A GND 1	87	CTR5 OUT
38	D/A OUT 1	88	N/C
39	CTR4 CLK	89	GND
40	CTR4 GATE	90	+12V
41	CTR4 OUT	91	GND
42	A/D EXTERNAL PACER	92	-12V
43	N/C	93	N/C
44	N/C	94	N/C
45	A/D EXTERNAL TRIGGER IN	95	A/D INTERNAL PACER OUTPUT
46	N/C	96	N/C
47	N/C	97	N/C
48	PC +5V	98	N/C
49	N/C	99	N/C
50	GND	100	GND

Table 18. 16-channel single-ended mode

Measurement Computing Corporation 16 Commerce Boulevard, Middleboro, Massachusetts 02346 (508) 946-5100 Fax: (508) 946-9500 E-mail: info@mccdaq.com www.mccdaq.com